

Case Studies

Log-Based CDC to BigQuery

Request and Guidelines Provided

- Client: A leading North American Quant Hedge Fund
- Design a Data Warehouse to capture data across multiple sources like MySQL, Oracle, and Mongo DB into BigQuery
 - Oracle been the main database which is used by the entire firm, the ETL process should not impact the database performance
- The data from BigQuery would be further used by the reporting and analytics team to generate insights and share it with the stakeholders

- Data model across the databases were studied (MySQL had company/employee data, Oracle had tick level accounting data, and MongoDB had ticker specific reviews & newsletters) and BigQuery schema was finalized
- PySpark based ETL scripts were built for MySQL and MongoDB and log-based CDC scripts were built and scheduled for periodic updates
 - Log-based CDC was a highly efficient approach that limited the impact on Oracle DB with minimal/zero-downtime
- Multiple data and business specific controls were added in the ETL scripts to maintain the quality and integrity of the data moving into BigQuery

Multiple Data Sources to Redshift

Request and Guidelines Provided

- Client: Private Equity Firm
- Create a centralized datawarehouse by,
 - Extracting data from different sources like flat-files, logs, images, etc.
 - Transforming the data into a standardized format based on business logics
 - Storing it for in-depth analysis

- Extracted data of different types, such as CSV, .log files, PDFs etc. from multiple data sources like emails, deal documents, meeting logs etc.
- Performed data transformation process using a combination of business logic, NLP, Fuzzy Logic and OCR to extract specific deal details, sentiment of the meetings, text from images etc.
- Implemented a set of rule-based algorithms to structure the data based on specific patterns and created automated pipelines that integrates with the database management system to load the transformed data into Redshift
- Performed data analysis to gather insights to take data-driven decisions using visualization tools

Multiple Data Sources to Redshift

Request and Guidelines Provided

- Client: A mid-sized perfume retail private company
- Currently, the data is spread across multiple databases depending on external stores, central office,
 e-commerce websites, etc. which is difficult to evaluate and generate insights
- Create a centralized datawarehouse by consolidating data across multiple databases which can be used to perform BI and Analytics
 - The datawarehouse solution should be read-only

- Post client discussions, data model were built to set-up the BigQuery efficiently
- To maintain read-only datawarehouse, a staging area was set-up to store all the data for temporary period
- Developed simple python based ETL scripts to first move the data into staging area and periodically move it to BigQuery
- All the sales, inventory updates/modifications to the data was done within the threshold period of 1 month post which it was moved to BigQuery
- The datawarehouse was used by the BI and analytics team to generate insights that can be used to improve business

Multiple Data Sources to Teradata

Request and Guidelines Provided

- Client: Private Equity Firm
- Currently, the data is spread across multiple databases depending on their portfolio company and geographic regions, with no single consolidated source to monitor real estate transactions globally
- Consolidate the data across multiple databases enabling in-house BI and Analytics
 - The datawarehouse solution should be WORM compliant
 - Create a pipeline for data backup and storage, optimized as per nature of data
 - Data to be available for analytics services and programming

Methodology and Final Deliverable

- ETL pipelines were setup using python and Informatica to extract data from multiple sources (MySQL, Oracle, JSON files) and load in Teradata (Datawarehouse)
 - Data from MySQL is transferred to Teradata on a monthly basis, the database only stores last 6
 months of data
 - Data from Oracle is transferred to Teradata when more than 80% of storage is exceeded, the transfer block size is 5 GB
 - Data storage was WORM compliant; partitions were created to make best use of resources and appropriate replication and backups were done with Robocopy
- The data warehouse and data marts were further utilized by the BI and analytics team to generate insights that can be used for better business decisions

Tools/Technology used: Teradata, SQL, Python, Informatica, Robocopy

CapIQ API Data Pull with Controls

Request and Guidelines Provided

- Client: Hedge Fund
- Automate the manual task of going period by period to fetch securities based on certain fundamental values using CapIQ API
- Fetch optimal screens/data and develop data cleaning algorithms for different geographies based on the ticker mapping file and business logic
- Based on the business logics and mapping file set controls on the raw data and trigger emails if there is a breach

Methodology and Final Deliverable

- Developed first and most recent trade-date based automated screening methodology and extracted raw data using CapIQ API
- Considering every database has a unique way to name the ticker symbol, a tickerization exercise was conducted on historical data to create Ticker Mapping file
- Leveraged Ticker Mapping file and business logic to clean the data and send automated emails in case of breach based on the controls set using Power Automate and Outlook
- The cleaned data was then moved to a model for further backtesting analysis
- Theis automated process eliminated 75% reduction in time to screen securities across periods with all controls in place

Tools/Technology used: CapIQ, Python, Excel, Power Automate, Outlook

Data Strategy, Architecture & Governance for optimal Data Engineering

Request and Guidelines Provided

- Client: Private Equity Firm
- Currently, the data is spread across multiple databases depending on their plant locations and managing team, reporting based on local standards
- Consolidate the data across multiple databases, run data governance checks and then provide the same for Analytics
 - The data is spread across multiple formats and data sources, many users input data leading to inconsistencies borne out of human errors
 - Data to be available at one place for a central analytics team, to run analytics for key stakeholders

- ETL pipelines were set up to extract data from multiple sources (MySQL, Oracle, JSON files) and loaded in a Data Lake with multiple layers of data governance framework
- Data quality was analyzed and curated using Informatica IDQ in
 - The "Validation" layer leads to integrity checks, completeness checks, de-duplication, ACID properties validation, and others; it was then passed to the "Cleaning" layer.
 - In the "Cleaning" layer, data was remediated with business logic, operational rules, and a feedback cycle from the operational team
- The processed data was then loaded into the Snowflake warehouse, where it was further used by the BI and analytics team to generate insights

